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Key points

• Although relatively robust to the following, ANOVA assumes
� normal distribution of residuals
� variation in each group is similar

• ANOVA is sensitive to outliers, and transforms of the data
may be necessary.

• ANOVA is a test of group differences: do at least two of the
means differ from each other?

• Two-way ANOVA tests a number of sources of variability:
� It is important to know which source of variation is of

interest.
� Do the sources of variation interact?

• Care is needed with repeated measures.
• There may be better tests, particularly if the factor can be

expressed as a continuous variable.

To compare two groups, we described how the t-test is used
(Drummond and Tom, 2011a; 2011b). To compare more than
two groups, we would use a different test, ANOVA. We start
with a premise very similar to the logic of the t-test: is it
possible that these groups could have been sampled from a
single population? A variety of forms of ANOVA exist, and the

test can be used (and misused!) in different ways. Some of
these variants are very useful in the analysis of common
experimental designs, when more that one intervention is
used. To appreciate the different types of test of this sort, we
will go back to the jumping frogs that we discussed before.
(Drummond and Tom, 2011a) Let’s suppose that we have a
random sample of 30 frogs from California and also have 30
frogs sampled at random from Texas, and 30 from Ohio. We
want to know if the means of the jump distance differ,
according to the origin of the frogs.

The origin of the frogs is a categorical variable (frogs in
our samples are from one of three states), and represent the
factor that we believe might affect the jump distance. Each
particular state is a different ‘level’ of this ‘factor’. In different
descriptions of this test, from book to book, these terms can
vary. Other expressions may be used for these concepts of
different ‘levels’ of a factor. Often, the factor being analysed
might be an intervention imposed on the samples: then the
‘factor’ becomes a ‘treatment’, and the ‘levels’ would be dif-
ferent categories or types of treatment such as placebo, drug
A or drug B. This categorization is important: ANOVA works
with categories. If, on the other hand, our treatments were
different doses (in other words, if the treatments were graded,
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or ordered, rather than just different), or if the treatment was
a continuously distributed variable (such as fluid intake, for
example), then there are probably better methods, such as
fitting to a dose–response curve, for data analysis, or other
forms of ANOVA. It is not particularly efficient to shoehorn
continuous measurements into categories.

The terms we are using are

Factor under study Factor, treatment that could
affect outcome

Categories within that
factor

Level, sample: a class of the
factor

The result we are considering is the length of the jumps,
which is a continuous variable. (Incidentally, the distance
measured in a Calaveras competition is the distance covered
by each frog in three jumps, not a single jump. A careful
reader worked this out from first principles and wrote to tell
us.) In the samples from each origin, the jump lengths vary
(Figure 1). This is just what we might expect, and have seen in
previous samples of frogs. This random variation can also be
called residual variation, or unexplained variation. This last
expression is used because when we do the test, some of the
variation in overall jump lengths is attributed to the factor we
are considering, that is the origin of the frogs. The variation
in jump length is estimated and thus explained by the factor,
origin. The rest of the variation is not attributed to origin,
and thus this residual variation is termed ‘unexplained’.
Because variation is the critical feature of this analysis, ANOVA

is sensitive to outlying values. Inspection of a dot plot may
indicate a potential problem, and transforming the data to
reduce the effects of outliers is often helpful.

A valuable feature of ANOVA is that as further factors are
considered (in this case, possibly random factors, not set by
the investigator), these can be incorporated into the analysis.
In this way, more of the variation is attributed to factors that
are known, there is less residual variation, and the power of
the test would increase.

Variation can be Within group or Between groups

Expressed as Random or Due to factor

or Unexplained or Explained by factor

or Residual

or Variation due
to error

Residual or within-group variation is assumed to follow
the normal, Gaussian, distribution. In ANOVA, variation is
calculated from the sum of squares (SS), and this value is
given in ANOVA test results. Briefly, it is computed from the
squares of the difference between each individual value and
the mean value of the group that this individual value has
come from.

In Figure 1A, we see this variation in a group of frogs,
from the scatter of the individual values. The SS around the
mean of this group’s values will increase if the number of
frogs in the group is increased. The more frogs, the more are
the values that contribute to the mean value and to the sum.
Here, the d.f. of the variation are (n – 1). This is because the
final value is not free to vary, since if the mean value is given,
and 29 of the individual values are known, then the final

value is fixed. The SS within all three groups is computed, and
these values are added. To derive an index of variation, and
allow comparisons between groups of different sizes, we have
to take into account the size of the groups. To do this, the SS
is divided by the d.f., to obtain the mean squares (MS) within
the groups. This measure of residual variation is computed
within each group, using the mean of that group alone,
before the values are added (Figure 1B). In this way, the
measure of variation is not affected by any differences between
the mean values of the three groups: it represents the varia-
tion within groups only.

We calculate the variation between the groups in a similar
way, by using the mean value of each group and the mean
value of all the samples, from all three groups (Figure 1C).
ANOVA then tests if the variation between the group means is
more than we might expect on the basis of the variation
within the groups. If frogs originating from California, Texas
and Ohio were all samples from a single uniform population,
these random samples should have jump distances with a
similar mean value. However, the mean values for frogs from
the three states will not be exactly the same. We compare the
variation between the groups and the variation within the
groups by calculating the ratio:

F = ( ) ( )MS between groups MS within groups

If the samples had been taken from a single population, then
this ratio would be close to unity, more or less. If the value of
F is large, then it is more likely that the factor being studied
has been affecting the mean values. In our example, the ratio
is sufficiently large to suggest that the variation between the
groups is much greater than the variation within the groups.
That is unlikely if the groups had all been samples from the
same population, and it is possible to estimate how unlikely
this might be.

We have to make some assumptions about the population
before we do this test: are these important? We need to
assume that the variances are sufficiently similar, and that the
population is normally distributed within the groups.
Broadly speaking, as long as the samples are not too few, the
sample sizes are not too different, and the group SD of the
samples do not differ by more than twofold, these assump-
tions are not vital.

The next question: if we do find a difference, where does
this difference lie? In this case, there was no reason to expect
a specific result. It might be different if we had done an
experiment, when there could be results expected in groups
that received treatments, and not in a control group, and thus
specific comparisons were of particular interest. As we have
no reason to expect a specific result, we use Tukey’s multiple
comparison test, which compares all possible pairs of groups.
This suggests that the Ohio frogs jump further than Califor-
nia frogs, but there is no evidence that Texas frogs differ from
either other group. If we had one group that could be con-
sidered ‘normal’ or ‘baseline’ and wished to compare the
others to this group, then Dunnett’s multiple comparison test
could be used. We shall consider multiple comparisons more
carefully in a further article.

The consideration of variance attributable to specified
factors can be very usefully extended, but interpretation
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can become more complex. We first show a simple result
with the frogs: we compare males and females of three
different species. The mean results are shown in
Table 1.

The raw data and the means are also plotted in Figure 2.
Plotting the means allows a better understanding of the pat-
terns of the relationships. In Table 1, we can see two patterns.
Looking at the marginal means (so called because the values
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Figure 1
Sources of variation. (A) Within a level of a factor (a sample). Variation around the mean in each sample is computed as the SS (individual value
– mean of the samples at that level). (B) Variation within all the samples (individual values – mean of the values at that level). (C) Variation between
the levels (using each group mean – overall mean).
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are at the ends of the rows and columns), there is a main effect
for species, as the marginal means differ, and also a main effect
for sex. When ANOVA is applied, the variances that are com-
pared to assess these effects are

For species: MS between species MS within speciesF = ( ) ( )

For sex: MS between sexes MS within sexF = ( ) ( )

The ANOVA table is shown in Table 2.
In Figure 2, the difference between male and female frogs

remains just about the same in each species. Although sex
does have an effect, this effect is not different in the different
species. This is interpreted as no interaction between these two
factors, species and sex. It is often much easier to see this sort
of relationship in a plot of the means.

When used carefully, there may be a place here for more
elaborate figures to assess interactions. Let us look at the
effect of dietary supplements on the three species (Figure 3).
In this case, a combined figure emphasizes the effect. A
further feature – interaction – can be seen clearly: a super diet
improves performance most in the species that already jumps
the furthest. In addition to finding a main effect of species,
and a main effect of diet, there is interaction between diet and
species. Two-way ANOVA quantifies this interaction by anal-
ysing the variance attributable to the combination of the
factors. It is wise to check for interactions first, in the process
of analysis. Multiple ANOVAs do not have to stop with two
sources of variation, but graphical presentation of more
effects becomes a problem!

ANOVA may not necessarily be the best approach to analy-
sis of several factors. This analysis is based on categories. Even
if one of the sources of variation is a graded or continuous
factor such as dose, each level is considered independently.

Table 1
Mean values of samples

Sex/species Bullfrog Leopard frog Tree frog Mean for sex

Males 536 564 618 572

Females 590 620 679 630

Mean for species 563 592 649

The marginal mean values (row of mean for species, column of mean for sex) indicate the main effects of species and sex.

Table 2
The results of the analysis of variance

Source of variation d.f. SS MS F value P value

Interaction 2 518.5 259.2 0.02050 0.9797

Species 2 228 638 114 319 9.041 0.0002

Sex 1 147 490 147 490 11.66 0.0008

Residual 174 2 200 000 12 644

The mean squares (MS) are calculated from the sum of squares (SS) and the d.f. The d.f. for sex are 1 (there are only two possibilities; if a
result is not categorized as one sex, then there is only one further possibility), and for species, the d.f. is 2 (there are three species). F is the
ratio of the MS between groups/MS within groups, when considering that factor.

Effects of sex:
no interaction between sex and species
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Figure 2
Main effects and interactions. Here, we have two main effects,
species and sex, but no interaction between them. Sex has the same
absolute effect, irrespective of species.
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Thus, a small dose, maximal dose and supramaximal dose are
considered as independent doses. It is more appropriate to
analyse data of this sort using a dose–response relationship,
that is by regression, a linear model or a sigmoid dose–
response curve. Similarly, lumping continuously distributed
factors into categories such as small, medium and large can be
wasteful because there could be substantial variation within
these groups that is not taken into account.

Another source of confusion is repeated measures. How
do frogs grow when we feed them a special diet? If we
measure a sample each week, then the small frogs are likely to
put on less weight than the big frogs in our sample. In other
words, the outcome is related to the preceding value; this
phenomenon of circularity can influence the results. Often,
the problem can be avoided by reducing the number of mea-
surements: why not wait for a longer time and then measure
the final weight of the frogs? If the repeated measures are of

interest then a repeated measures ANOVA can be used, but this
is trickier.

This is a very general account of a widely used test. There
are a lot of possible pitfalls in the more complex versions;
careful planning of the study and good advice, in equal
measure, are important ingredients in the successful use of
ANOVA.

References
Drummond GB, Tom BDM (2011a). How can we tell if frogs jump
further? Br J Pharmacol 164: 209–212.

Drummond GB, Tom BDM (2011b). Statistics, probability,
significance, likelihood: words mean what we define them to mean.
Br J Pharmacol 164: 1573–1576.

Normal diet

J
u

m
p

 d
is

ta
n

c
e
 (

c
m

)

Bullfrog Leopard frog Tree frog

500

1000

Main effect
of species

Super diet

Bullfrog Leopard frog Tree frog

500

1000

Main effect

of species

A

J
u
m

p
 d

is
ta

n
c
e
 (

c
m

)

0

500

1000

Interaction between
food and species

Bullfrog                       Leopard frog                Tree frog

B C

J
u

m
p

 d
is

ta
n

c
e
 (

c
m

)

0

500

1000

Main effect

of diet

Normal diet        Super diet

Figure 3
Here, there are two main effects evident. (A) There is an effect of species, in both the group fed the normal diet and the group fed the super diet.
(B) There is an effect of diet, in all the species. (C) However, the effect of diet is greater in some species. The effects of diet and species interact
positively: this is an interaction.
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